Managing the renewables challenge in secondary distribution networks

Tim Spearing, Product Marketing Manager
Lucy Electric, United Kingdom
Managing the renewables challenge in secondary distribution networks

1. Challenges in grid management
2. Monitoring LV Networks
3. Load Profiles
4. Voltage Optimisation
5. Fault Detection
6. Looking ahead
Managing the renewables challenge in secondary distribution networks

1. Challenges in grid management
2. Monitoring LV Networks
3. Load Profiles
4. Voltage Optimisation
5. Fault Detection
6. Looking ahead
Challenges in grid management

Passive Electrical Networks

- Centralised Power Generation
- Grid supply points
- Distribution Networks
 - Normal operation
 - Fault conditions
 - Abnormal operations
 - One-directional power flow
- Predictability
 - Voltage profiles
 - Load factors
 - Fault currents levels

Power Flow
Challenges in grid management

Active Electrical Networks

- Growth in:
 - Large scale Renewable Energy Sources (RES)
 - Distributed Energy Sources (DES)
 - Low Carbon Technologies (LCT)

- Distributed Energy Sources
 - Bi-directional Power Flow
 - Higher voltage profiles
 - Intermittent nature
 - Less predictable
Challenges in grid management

Addressing generation short fall

• Access to electricity
 • Generation shortfall
 • Reliable access
 • Disruption-linked outages
 • Network Intelligence

• Challenges in grid management
 • “Last mile” of the distribution network
 • Planned & predicted in the past
 • Variable now & in future
 • Customer take-up
Challenges in grid management

Load Profiles

- Traditional models predictable, based on:
 - Metering points
 - MDI readings
 - HV load data

- Challenges to this model:
 - Embedded generation
 - Weather
Managing the renewables challenge in secondary distribution networks

1. Challenges in grid management
2. Monitoring LV Networks
3. Load Profiles
4. Voltage Optimisation
5. Fault Detection
6. Looking ahead
Monitoring LV Networks

System Architecture

- Control Room
 - SCADA / DMS
- MV Primary
 - RMU
 - MV/LV Transformer
- MV Overhead Lines
 - Switches
 - Pole mounted MV/LV Transformer
- LV Feeder Pillars
- LV Monitoring
- LV Cut-outs
- LV Monitoring

Data Analytics
Monitoring LV Networks

Gridkey Substation Equipment

- Safe retrofit
- IP65
- 5 feeders (20 conductors)
- Class 1 accuracy
- over range 4-720A
- Alarms & reports
- Communications

MCU (Metrology and Comms Unit)
Current sensors
Voltage taps via G-Clamps on the bus-bars
Monitoring LV Networks

Gridkey Substation Equipment

- **Sampling**
 - 8kHz
- **Monitoring**
 - 5 Hz (ten line cycles, IEC 61000-4-30)
- **Statistical Data**
 - Reporting period adjustable
 - Can be altered remotely
 - Analysis at data centre
- **Instantaneous data reporting**
 - Average, max and min reports
 - Programmable alarms
- **Highly efficient data comms protocol**

Lucy Electric
GridKey MCU520
Current Sensors

- GridHound Rogowski sensor designed specifically for LV monitoring
 - Sized for 300 mm2 Wavecon
 - 0.5 class accuracy
- Flexible Rogowski sensors
- Types can be mixed
Monitoring LV Networks

NoSQL database

- >60 billion data points stored in data centre
- Hierarchical dashboards, web portal,

<table>
<thead>
<tr>
<th>Average kVA</th>
<th>Load factor</th>
<th>Max kVA</th>
<th>Average V</th>
<th>Over V</th>
<th>Under V</th>
<th>Feeder Av</th>
<th>Feeder Max</th>
<th>Feeder Peak</th>
<th>Max neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>23%</td>
<td>65%</td>
<td>35%</td>
<td>108%</td>
<td>86%</td>
<td>0%</td>
<td>46%</td>
<td>81%</td>
<td>237%</td>
<td>39%</td>
</tr>
<tr>
<td>23%</td>
<td>58%</td>
<td>40%</td>
<td>107%</td>
<td>50%</td>
<td>0%</td>
<td>32%</td>
<td>71%</td>
<td>21%</td>
<td>22%</td>
</tr>
<tr>
<td>20%</td>
<td>42%</td>
<td>50%</td>
<td>105%</td>
<td>0%</td>
<td>0%</td>
<td>19%</td>
<td>67%</td>
<td>70%</td>
<td>36%</td>
</tr>
<tr>
<td>13%</td>
<td>29%</td>
<td>31%</td>
<td>105%</td>
<td>0%</td>
<td>0%</td>
<td>14%</td>
<td>62%</td>
<td>67%</td>
<td>39%</td>
</tr>
</tbody>
</table>

Average current	302	42%	146.8	37%	-22.0	-6%	182.9	46%	-23.3	-6%	21.3	5%
Max 1 minute current	488	67%	268.8	67%	16.4	4%	324.3	81%	15.4	4%	87.6	22%
Peak current	499	69%	272.0	68%	18.6	5%	947.6	237%	23.3	6%	203.4	51%
Min 1 minute current	134	19%	51.5	13%	-59.63	-15%	83.625	21%	-62.13	-16%	10.5	3%
Average neutral	80	11.0%	19.4	5%	6.9	2%	29.9	7%	7.4	2%	16.0	4%
Max 1 minute neutral	165	22.7%	48.125	12%	19.375	5%	118.13	30%	20.375	5%	63.875	16%
Peak neutral	723	99.7%	76.0	19%	21.9	5%	673.9	168%	23.0	6%	208.8	52%
Average current imbalance	80	26.4%	13%	-31%	16%	-32%	75%					
Managing the renewables challenge in secondary distribution networks

1. Challenges in grid management
2. Monitoring LV Networks
3. **Load Profiles**
4. Voltage Optimisation
5. Fault Detection
6. Looking ahead
Residential PV on a sunny day in England …
Load Profiles

Busbar Mean Current Values up to 02/05/2013

The graph illustrates the mean current values for busbar over time from 02/05/2013.
Load Profiles

Busbar Mean Voltage Values

Busbar Mean Voltage Values up to 02/05/2013

Volts

02May 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Time
Load Profiles

Busbar Mean Active Power

Busbar Mean Active Power Values up to 02/05/2013
Load Profiles

Busbar Mean Reactive Power

Busbar Mean Reactive Power Values up to 02/05/2013
Residential PV on a sunny day in England …

- Net export to grid (during 08:00 – 16:00)
 - Current reversal
 - Small amount of reactive power
 - Voltage within limits
Load Profiles

Residential PV on a typical sunny day in England …
Load Profiles

Busbar Mean Current Values

Busbar Mean Current Values up to 13/05/2013

Amps

13May 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Time

www.eapicforum.com
Load Profiles

Busbar Mean Voltage Values

Busbar Mean Voltage Values up to 13/05/2013

Volts

13May 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Time

www.eapicforum.com
Load Profiles

Busbar Mean Active Power Values

Busbar Mean Active Power Values up to 13/05/2013
Load Profiles

Busbar Mean Reactive Power Values

Busbar Mean Reactive Power Values up to 13/05/2013
Load Profiles

Residential PV on a typical sunny day in England …

• Variable load profile (during 08:00-16:00)
 – Forward & reverse currents
 – Voltage within limits
 – Small amount of reactive power
Load Profiles

PV installation, on an overcast day in England …
Load Profiles

Busbar Mean Current Values

Busbar Mean Current Values up to 11/04/2013

Amps

11Apr 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Time
Load Profiles

Busbar Mean Voltage Values

Busbar Mean Voltage Values up to 11/04/2013

Volts

Time

11Apr 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

230 232 234 236 238 240 242
Load Profiles

Busbar Mean Active Power Values

Busbar Mean Active Power Values up to 11/04/2013

Watts

Time

www.eapicforum.com
Load Profiles

Busbar Mean Reactive Power Values up to 11/04/2013
Load Profiles

PV installation, on an overcast day in England ...

- **Forward current profile**
 - Active power rises during day
 - Minimal reactive power forward & reverse
Managing the renewables challenge in secondary distribution networks

1. Challenges in grid management
2. Monitoring LV Networks
3. Load Profiles
4. **Voltage Optimisation**
5. Fault Detection
6. Looking ahead
• Tracking voltage performance

• Fraction of time in voltage bands
 • > 253 V (+10%)
 • 247-253 V (+ 7.5% to +10%)
 • 221-247 V (-3.5% to +7.5%)
 • 216 – 221 V (-6% to -3.5%)
 • < 216 V (-6%)
Each row is a substation

Measured voltage
Voltage Optimisation

• **Network Challenges**
 - Traditional curve voltage drop
 - Reverse Power Flow
 - Voltage Rise with PV
 - Equipment Ratings

• **Solutions**
 - Improve network utilisation
 - Limit / control the connection of PV
 - Introduce automatic voltage regulation on LV networks
Managing the renewables challenge in secondary distribution networks

1. Challenges in grid management
2. Monitoring LV Networks
3. Load Profiles
4. Voltage Optimisation
5. **Fault Detection**
6. Looking ahead
Fault Detection

Intermittent pre-fault current spikes

- LV cable failures
 - Mechanical damage
 - Jointing faults

- What to look for
 - Instantaneous peak currents in excess of normal loads
 - Clustered events

- Health index for cables
Managing the renewables challenge in secondary distribution networks

1. Challenges in grid management
2. Monitoring LV Networks
3. Load Profiles
4. Voltage Optimisation
5. Fault Detection
6. **Looking ahead**
Looking Ahead

Actionable Information

- **Planning**
 - Asset Management
 - Reinforcement

- **Power Quality**
 - Voltage profiles
 - Total Harmonic Distortion

- **Losses**
 - Technical Loss
 - Non-technical Loss

- **Faults**
 - Predict
 - Detect
 - Analyse
 - Fix

www.eapicforum.com
Looking Ahead

Integration into Monitoring and Control Systems

Control Room
SCADA / DMS

MV Primary
RMU

MV/LV Transformer

LV Feeder Pillars
LV Monitoring

RTU

Data Analytics

Alarms
Min
Max
Set-points
Integration into Monitoring and Control Systems

- **Geospatial network views**
 - Real-time outages
 - Load profiles / modelling
 - Blown fuses / broken conductors
 - Under / over voltage
 - Location of LV faults

- **Managing “Electrical Headroom”**
 - Network reconfiguration
 - Embedded generation
 - Energy storage
 - Demand response

Lucy Electric SCADA system, courtesy of SKELEC
Looking Ahead

Integration into Monitoring and Control Systems

- Response to generation shortfall
 - More management tools
 - Quality of service
 - Intermittent generation
 - Bi-directional power flows

- Visibility and Active Management
 - Centralised control points
 - Microgrids
 - Off-grid

- Data has more than one use
 - e.g. may assist asset management
THANK YOU

Q & A