Integrating renewable energy into the grid: The Eskom approach to grid connection – studies, data exchange

AFRICAN UTILITY WEEK

Dr Clinton Carter-Brown and Mobolaji Bello
Corporate Specialist and Senior Engineer
Eskom Holdings Limited
South Africa

www.african-utility-week.com
Contents

1. Overview of the connection process
2. Network studies required per application
3. System level studies
4. Typical studies performed by the generator developer
5. Grid Code specifications
6. Grid connection data exchange
7. Generator plant simulation models
8. Network capacity analysis technical criteria ≥ 20MW
9. Conclusions
Overview of connection process

Consultation
- Prospective applicant contacts Eskom

Connection
- Pre-project Planning phase

Operation
- Long-term operations

Concept phase – Budget Quotation (BQ)
Assess alternative concept design solutions.
Identify land and rights, servitudes dependencies.
Perform preliminary design.
Prepare and issue a Budget Quotation.
All expected connections need to be considered. High accuracy level (abt 85%).
Assess likely connection options.
Prepare planning report and issue an Indicate Cost Estimate (ICE).
ICE treats all applications independently. Lower accuracy level (abt 60%).
Overview of connection process

- Indicative Cost Estimate (ICE):
 - Checks the high level feasibility of connection
 - Identifies the proposed point of connection to the grid and the scope of work - independent of other applications
 - Identification of any technical issues that may require further consideration during BQ

- Budget Quote (BQ):
 - More detail regarding grid connection
 - Considers interdependency with other applications, and dependencies such as lands and rights & environmental
Network Studies per application: Steady state load flow & fault level

- Load flow study to verify:
 - If voltages at the connection point and at other points are within permissible limits
 - Power flows on the affected lines/transformers are within current carrying capacity of the lines/transformers i.e. thermal loadings
 - Technical losses as generators may have a significant effect on network losses. A generator can lower or increase losses depending on its location and the network configuration
Network Studies per application: Steady state load flow & fault level

- Load flow study to verify:
 - **Rapid voltage change** to check voltage variations, generation rejection & generation output variations (voltage variations as will be experienced by other customers)

- **Short circuit studies** to verify:
 - Short circuit current ratings of equipment and violation due to the additional short circuit current contribution
System level studies

- These are studies done by the utility analysing the system wide interaction of all generation (existing and new)

- These typically include the following:
 - Traditional transient stability (dynamic) studies
 - Low voltage ride through (LVRT) studies
 - Other specialized studies e.g. SSR
System level studies

- For planned future generation, generic models are used - these models are informed by the Grid Code i.e. the “future” generator is assumed to be Code compliant

- For “as-is” operational studies, detailed and verified dynamic models of the generators are used - only available after plant commissioning
Typical studies performed by the generator developer

- Performed as part of plant design for Code compliance
- Includes all studies to design and confirm the required steady state and dynamic response
- These studies may include the following:
 - LVRT
 - Harmonic studies
 - Flicker analysis
 - Reactive power range and compensation
Grid Code specifications

- Active power control (frequency control)
- Reactive power control (e.g. PF, Q or V control)
- Reactive power capability
- Low Voltage Ride Through (LVRT)
- Signals, communication and control
- Electrical dynamic simulation models
- Etc.
Grid connection data exchange: General

- Generic Code compliant generator models are used for initial grid integration studies – as such, only basic data is required for initial studies (typically steady state studies)

- Validated “actual” generating plant models are only available post commissioning
Grid connection data exchange: Information from Generator developer

- Physical location of the plant (e.g. GPS coordinates)
- Type of generator e.g. Solar PV, Solar CSP, Wind
- Maximum exporting capacity into Eskom network (MW)
- Fault current contribution (MVA) from the generating plant
Grid connection data exchange: Information provided by Eskom

- Eskom will provide the following network data:
 - The network impedance and fault level
 - Supply substation Single Line Diagram (SLD)
 - Details of equipment (such as conductor type, length, size) between the supply substation and the POC
 - Loading and fault level ratings of the above equipment
 - Information on present network performance and Quality of Supply (QOS) levels
 - Level of network redundancy to the POC
Generator plant simulation models

- The utility requires an aggregated model of the generating plant which represents the generating plant response at the point of connection.
- An understanding of what is happening at each generator is not required by the utility.
- The developer requires detailed models of the entire generating plant installation (design and code compliance) including all generator, transformers, lines/cables, controller, reactive power devices etc.
Generator plant simulation models: Detailed wind farm

www.african-utility-week.com
Generator plant simulation models: Aggregated wind farm
Network capacity analysis technical criteria ≥20MW

- Multiple scenarios: e.g. high gen, low load
- Voltage limit compliance with Power Factor: 0.975 lag to 0.975 lead
- Fault levels < equipment ratings
- Rapid Voltage Change (RVC):
 - “Constant” generation: <=5%, at power factor of 0.975
 - “Variable” generation: <=3%, at power factor of 0.975
Conclusions

- Eskom connection process provides for quick high level feedback (ICE) followed by more detailed quotation (BQ)
- Utility grid connection studies are limited to steady state load flow and fault level calculations
- Dynamic studies need to be performed on a system level for multiple generators
- Grid Codes are critical – allow simple data exchange for connection studies
Conclusions

- Utility only interested in characteristics of the generator plant at the point of utility connection
- Aggregated models are suitable for utility studies
- Detailed models of the generation plant are required for design, including compliance with Code requirements
- Utility requires clear criteria against which study results will be assessed (voltage range, thermal loading, fault level, rapid voltage change)
Thank you

- Dr Clinton Carter-Brown
 Email: cartercg@eskom.co.za
 Phone: +27 11 655 2472
 Mobile: +27 83 630 0626

- Mobolaji Bello
 Email: bellomm@eskom.co.za
 Phone: +27 11 651 6311
 Mobile: +27 83 697 7590